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We present nonlocal discrete transparent boundary conditions for a fourth-order
wide-angle approximation of the two-dimensional Helmholtz equation. The bound-
ary conditions are exact in the sense that they supply the same discrete solution
on a bounded interior domain as would be obtained by considering the problem on
the entire unbounded domain with zero boundary conditions at infinity. The pro-
posed algorithm results in an unconditionally stable propagation method. Numerical
examples from optics illustrate the efficiency of our approacls.2o00 Academic Press
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1. INTRODUCTION

Many time-harmonic scattering and wave propagation problems in electromagnet
optics, and acoustics can be modeled by the scalar Helmholtz equation. If the prob
under investigation has a dominant scattering aspect, e.g., the scattering of a beam fro
arbitrary-shaped particle, the full Helmholtz equation must generally be solved as a bot
ary value problem on an unbounded domain. This requires scattering-theory approa
such as boundary element methods [1], infinite element methods [6], or methods for sol
the interior problem subject to Dirichlet-to-Neumann radiation boundary conditions [10

However if a dominant wave-guiding mechanism is present, the Helmholtz equatior
typically approximated either by the paraxial wave equation or by wide-angle equatio
Such one-way approximations reformulate the original boundary value problem as anin
boundary value problem. Such atransformation, when applicable, replaces the second p
derivative operator with respect to the propagation direction in the Helmholtz equation w
a first derivative. As a result, propagation algorithms can be applied that require far |
memory than the numerical realization of the full scattering problem.
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In approximating the Helmholtz equation by a paraxial or wide-angle equation, we mi
address two issues:

(i) The relationship between the Helmholtz operator and various wide-angle operatc
(i) The construction of boundary conditions that suppress artificial reflections at t
boundary of the computational domain.

Since the first topic has been the subject of detailed investigation [8], we will here consi
the wide-angle operator as given regardless of its approximation properties and concen
on the second of the above issues.

Initial attempts to provide transparent boundary conditions for the lowest order wic
angle equation resulting from the [1, 1]-FRadpproximation of the (pseudo-differential)
square-root Helmholtz operator were provided by Papadakis [13], Yevick and Thom:
[18], and Arnold and Ehrhardt [2]. In the last of these references derivations of both |
well-posedness of the wide-angle equation based on the [1, Edpguldximation is proved
and the computational form of the discrete transparent boundary conditions is given. |
fortunately, the authors’ presentation is rather complex as a result of their use of the di
and inverse Laplace transforms with respect to the propagation coordinate. Similar c
siderations apply to transparent boundary conditions for time domain simulations of w:
propagation problems as outlined in [7].

The main goal of the present paper is to extend our previous derivation of transg
ent boundary conditions for the paraxial (Satliriger) equation [14] in a straightforward
manner to wide-angle operators that contain a fourth-order derivative with respect to
spatial (transverse) variable. Our approach requires Laplace transforms only in the tr:
verse direction and, in contrast to the above-mentioned methods, does not require an iny
Laplace transformation. Our derivation is further simplified through the introduction of
shift operator along the propagation direction as described in Ref. [16]. To our knov
edge, no other exact transparent boundary condition has been derived for a fourth-o
wide-angle method. Additionally, to discretize the fourth-order transverse derivative, cu
C'-elements are required while our paraxial analysis is instead based on continuous lir
finite elements [14]. The cubi€!-element formulation is of interest, however, even for
the solution of second-order equations because of the far greater accuracy attainable
cubic elements. The fourth-order problem thus provides insight into generalizations of
paraxial algorithm that are required to attain greater accuracy or to solve more gen
higher order wide-angle problems.

Another procedure forimplementing wide-angle approximations involves recasting wic
angle representations of the Helmholtz operator, that can be of arbitrarily high transve
order, as products or sums of expressions involving only second-order transverse deriva
[4]. A generalization of Ref. [14] applicable to such operator-splitting techniques is exa
ined in a companion paper [15], which considers arbitrary rationa Bpgdfoximations for
the square-root Helmholtz operator. Finally, it should be noted that numerous alterna
approaches exist to the solution of the interior problem. Some examples of these are
Engquist—Majda-type local approximation based onePaairoximants [5], the factorized
boundary conditions of Higdon [9], and the perfectly matched layereoéijer [3]. How-
ever, in contrast to our procedure, these methods do not involve an implicit determinat
of the corresponding exterior solution and cannot be adjusted according to the structur
the underlying propagation algorithm.
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2. PRELIMINARY CONSIDERATIONS

In accordance with the discussion of the previous section, we consider the one-
Helmholtz equation

U =ivPu,  u(0) = uo,

whereu’ denotes the derivative ofwith respect taz, and the operatoP is given by
2
T2

Settingv = exp(—i /it 2)u yields the initial value problem

P + f(x).

U:i(«/ﬁ—ﬂ)vziﬁ( 1+ P;M —1>U, v(0) = vo = Uo,

for the functiorw. To obtain the wide-angle equation of interest in this paper, the square-rc
expression is replaced by its, [@]-Pad approximant, which corresponds to the quadrati
Taylor polynomial

11
Vit -1~ ¢ - 22
- 56— gt

The starting point of our investigations is thus formed by the initial value problem

) e e

We assume that the functidhis real, bounded, and positive, and that the parametés
be characterized later, is real and positive.

The principal goal of this paper is to solve (1) numerically on a computational dome
{(X,2) € R%X_ < X < X4, z> 0} such that the boundary condition

lim v(x,20=0, VvVz>0 (2)

X—+00

at infinity is fulfilled subject to the additional assumptions:

(i) The function f is equal to the constant valyein the two external domains < x_
andx > X..
(ii) The initial valuevg is supported 2 = (X, X4).

As a result of the above two conditions, the Laplace transforms jpdssess a simple
algebraic structure that we will exploit in Section 3.2 to facilitate the derivation of ot
subsequent boundary condition. For notational simplicity, we specialize to the¢ case.
The more general conditioh = const f # u, is considered in the context of an analysis of
higher order Paglapproximations in [15]. In a similar manner, we have imposed conditic
i) to simplify our calculations. While condition ii) may in fact be relaxed for some initia
fields with noncompact support, additional inhomogeneous parts in the final results (14)
(15) for the nonlocal boundary conditions are generated, as can be seen from the analy
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[11]. This reference presents a transparent boundary condition based or0hB§tE-type

approximation to the propagation operator that is valid for initial fields with non-compa
support and even for media with a linear dependence on the transverse coordinate. How
the derivation that is followed first applies a Laplace transform in the propagation directi
after which the resulting differential equation is solved directly. As a result, an inver
Laplace transform is required to obtain the desired boundary condition in contrast to
method employed in this paper. In order to guarantee the desired decay of the solu
towards infinity, appropriate boundary conditions must be imposed on the fundiicthe

finite boundary points... We remark that our derivation of these conditions is not restricte
to the case of condition i) and can be extended to arbitrary values of the parameter

2.1. Implicit Midpoint Discretization

As the first step towards deriving our transparent boundary conditions, we assume
problem (1) has been discretized with respect tiorough the implicit midpoint rule

(1— jA) V1 (X) = (1+ jA) w(x), k=01,..., A3)

where the operatoA is given by

P— 1/P—pu\?
A= (5 a5
M 4\ n
The parametes = i,/i Az is proportional to the step siz&z in the propagation direc-

tion. Denoting for brevityp, = 3/0x, from the assumptions of the previous paragraph, th
corresponding recursion (3) in the exterior domaing(x_ andx > x,) is

51 1 5 /1 1
|:l— 2 (;af - 4728:‘1)] Uk41(X) = [1+ 2 (;33 - 4—11,283>] uk(X), (4)

with initial datavo = 0. To apply a finite element method in the interior dom&in=
(X, X4), we reformulate (3) as a variational problem; that is, we determinge H?2(S)
such that the relation

) )
(W, vky1) — Z[a(w, Uk+1) + b(w, v1)] = (w, v) + Z[a(w, v) + b(w, v)],  (5)
in which
1 1 1, 2
a(w,v) = ;(w, gv) — ;(axw, Oxv) — 4—(3Xw + gw, o, v + gv),

/’LZ
X4
e

andg = f — p, is fulfilled for all w € H2(2). The expression, -) represents the standard
scalar product in the spat&(Q), while the spacéi2(Q2) consists of all twice differentiable

functions in the weak sense. Since we assurhed . in the exterior domain, boundary
terms containingy are absent.

b(w, v) =

- w(83v —4uo v)‘x+ — dwdv
42 X *x XX
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In the following section we will transform the boundary condition (2) at infinity tc
conditions on the values of the quantiti&®; — 4udxv; andd2v; at the finite boundary
points x.. These conditions guarantee that the solution properly decays in the exte
domainx < x_ and x > x, despite the fact that we solve (1) only within the interior
domain = (x_, X). To keep the presentation of our method compact, we will represe
the values of the derivativekvj, 32vj, andddv; at the boundary points. by v;(X+),

i')j (X4), and'i)',- (X4).

3. WIDE-ANGLE BOUNDARY CONDITIONS

3.1. Initial Propagation Step

We now derive our wide-angle boundary conditispgecializingto the solution at the
right boundary poink_ ; the derivation for the left boundary point is entirely analogous
For notational simplicity, we further set. = 0.

To motivate our recursive technique, we first consider the initial propagation step. |
this step, it is only necessary to solve a homogeneous, linear ordinary differential equa
with constant coefficients. Since an explicit solution to this problem is available, we ¢
study the influence of the free constants on the asymptotic solution that supplies the de:
boundary condition for the step. The functiorix) in the right exteriordomair > x, =0
satisfies the homogeneous fourth-order ordinary differential equation

51 1
-4t gt oo

which has as its general solution

v1(X) = ArexplaiX) + Az explazX) + Agexp(—azX) + Agexp(—aiX), (6)

a1=\/ﬂ\/1+\/¥ and azz\/ﬂ\/l—,/l—% 7

In the remaining part of this paper we will assume that the square-root function is defit
in such a way that the relation,/¢ > 0 holds for allz € C. This assumption implies that
the relationsia; > 0 andd%ia, > 0 are valid. The exterior solution therefore only decays
if the values ofv,(0), v1(0), v1(0), andv'1(0) are such that the coefficients; and A; in
the general solution (6) vanish. The relationship betweermth (6) and the boundary
values ofv; is given through the linear system of equations

with

1 1 1 1 Ay v1(0)
o1 O —02 —07 A2 i)l(O)
o of o o || A | 5200

3 .3 3 3
apf oy oy —og Ay v1(0)
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By multiplying this linear system with the matrix

|: o102 a1+ a2 1 0
—agoo(ay +az) —(@Au+aap) 0 1

we find, after applying the Vieta root theorerfi+ o3 = 4,

[ o o } {Al} B { a10201(0) + (1 + a2)01(0) + 91(0)
—ajop  —og0n | | Ay —aaz(ag 4 a2)v1(0) — (du + a1a2)01(0) + V'1(0) |
)
wherey = 2(a1 + ). Accordingly, imposing the boundary conditions
V'1(0) — 4 01(0) = agaz(a1 + a2) v1(0) + aga2 91(0) ©)

—01(0) = a2 v1(0) + (o1 + @2) 11(0)

generates a homogeneous linear system from whichnd A, can be determined. Since
the relationsx; # 0, a # 0, anday # +a, are valid for alls € i[0, 0o0), the determinant
—Aaqao(ar + az)?(a1 — ap) Of the coefficient matrix in system (8) is always non-zero.
Accordingly, for our special choice of boundary conditions (9), (8) imphges= A, = 0.
The boundary conditions (9) for the functian therefore ensure that the solution in the
right exterior domain has only decaying components. In the following section the abc
treatment will be extended to the functiep.; for k > 0, corresponding to subsequent
propagation steps.

3.2. Subsequent Propagation Steps

To derive the full transparent wide-angle boundary condition associated with (1) ir
compact form we introduce, as in Ref. [14], the Laplace transforms

Vj(p) = /0 exp(—px)v;j (x) dx

of the functionsv;. The recurrence relation (4) in the exterior domain then becomes
s(p* 1pt 8 s/p? 1p 8

P—(p—4ﬂﬂwﬂw»-mﬂww=P+C)—ﬂﬂwmm—mmx
I 4 w 4

I 4 4pu
(10)

with the boundary terms

1p® p 1p?> 1). l1p. 11 ..
bj(p) = (ZF - ;) vj(0) + <ZF - ;) Uj(o)‘i‘zﬁvj(o)‘f‘zﬁvj(o)-

From relation (10) we readily see by induction and decomposition into partial fractio
that the Laplace transform of the functiop,; in the right exterior domain for arbitrary
boundary valuesy1(0), 1x+1(0), vk;1(0), and v’k 1(0) possesses the form

k+1

Vi (p) = Y

j=1

A(lj k+1) A(2j k+1) Aéj k+1) Aij k+1)

P—anl  (p—al  (ptazl  (prapi|
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where the zeros, a are given by (7). If we further introduce the shift operagday

Vk = S\’f(-l—la

we obtain from (10) the alternative representation

) 2 1p )
[(1— s) — Z(p— - —%) 1+ s)} Vis1(P) = S (b(p) + by (py). (1)
w4 4

a(p)

The above expression is the starting point for the subsequent derivation of our transpe
boundary condition.

At the beginning of the section we introducgdas the variable dual to the spatial
coordinatex in accordance with the standard integral definition of the Laplace transfor
An alternative point of view, however, is to consideas a differential operator which can
be defined in an algebraic way. This algebraic counterpart to the Laplace transformat
introduced by Mikusiski [12], does not offer a practical advantage in the current context-
as long as we consider the transverse direction—and is therefore not employed in this p:
On the other hand, introducinglscreteshift operatos implements Mikusiski’'s approach
in the propagation direction, which provides several important advantages. In particu
the standard procedure for obtaining boundary conditions ftisoreteevolution equations
such as (10) is to applya-transformation, which is the discrete counterpart of the Laplac
transformation, to perform algebraic operations on the resulting equations, and finally
transform back to the original domain. Through the introduction of the opesatayever,
we are able to manipulate the partial differential equation directly without applying forwa
and reverse Laplace transforms. The basic fact from the algebraic operator theory is
power series irs are well-defined operators and they are always convergent.

We next reformulate the boundary condition (2) at infinity for the right exterior domai
as the condition that the Laplace transfovi; of the functionuy 1 is regular in the entire
right p half-plane. That is, if the polynomial on the left hand side of Eq. (11) approaches
zero, our choice of boundary conditions must ensure that the right hand side of (11) likev
vanishes.

The zeros of the polynomialthat may correspond to poles\df, ; in the right half-plane

are
41—s 41-s
=/2u\[14+4/1-==—  and =2u/1—J1- 22—
P “\/ * 51+s P2 “\/ 51+s

Hence we have to ensure that the two relations

bk(P1,2) + bey1(pr2) =0

are valid. Since initiallyyg = 0 in the exterior domain we can assume by induction the
bk(p1.2) = 0. We thus arrive at the conditiolbg,1(p1.2) = 0, which are explicitly

5 ) vk+1(0)
ik _p 1P _ 1 1p 11 .
42 i“w 4 2 w4 p?z 4p? Uk+1(o) . |:0:|
1P _p 1P 1 1p 11| | Uk+2(0) 0
4 2 w 4 12 nwo 4p?z 4p2

Vi41(0)
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Applying the Vieta root theoremp? + pZ = 4y leads to the following equivalent form of
the above equations:

vk+1(0)
1{p1 1“ P1pP2 p1+ P2 1 0} Uk4+1(0) _{0}
4u? | pp 1] —pip2(pr+ p2) —(@u+pp2) O 1| §ia(0) | (O]
V41(0)

This relationship finally yields the transparent boundary conditions

Vi41(0) — 4pin;1(0) = prp2(P1 + P2)vk+1(0) + P1P20k+1(0) 12)
—Uk41(0) = P1P2vk+1(0) + (P1 + P2)vk+1(0)

for the functionuy 1 at the right boundary point.
To conclude the construction of the boundary conditions, we expand the opgrapers
p1 + P2, andpyp2(p1 + p2) in their Taylor series according to

mp2=> Bis'.  pAp=) ys.  and  ppa(ptp) = 8sl. (13)
j=0

j=0 j=0

Sincesl v1 = vk+1—j, the right hand side of (12) can now be evaluated in a practic:
fashion. The convergence of the above series is shown in Ref. [12, pp. 149]. Applying
identities

1-s

P1pP2 = agaz TTs and  (p1+ P2)? = 4u+2pip2
gives for the Taylor coefficients in (13)
—Bj-1, j odd
Bo = a1z Bi = i1 .
—'T,Bj,l, j even
1 1.2 .
Yo =01+ a2 Vj=%<,3j—ézyji%>, j>1
i=1

i
do = a1az(n +a2) ZZﬂj—iVlv
i=0

wherea; anda; are taken from (7). Since, is assumed to vanish for the exterior domain,
we finally obtain for the transparent boundary conditions at the right boundary»oint

k k
Vi (X)) = Budkra(Xg) = Y 8jua—jOG) + D By (),
=0 =0 (14)

k k
—1 (%) = Y Bijuigaj (X0 + D Vit (Xy).

j=0 j=0

Here we have applied a translatian— x + X, in order to generalize (12) to arbitrary
positions of the right computational window boundary. Note thakfer 0, (14) coincides
with the previously determined boundary conditions (9) for the funation
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In a similar fashion, we can obtain the corresponding boundary conditions

k k
— Vi (X0) + A Dipa (X)) = Y 8j vpa-j (X)) = > By g (X0),
i=0 j=0
) ) (15)
D1 (X) = =) Bjuipa—j (X)) + D Vi (X2),

j=0 j=0

for the left boundary point_. The equations (14) and (15) guarantee that the funetion
in the exterior domaix < x_ andx > x, satisfies the boundary condition (2) at infinity
and therefore allow the proper solution of problem (1) within the finite subdofain

4. FINITE ELEMENT DISCRETIZATION AND STABILITY PROPERTIES

4.1. Cubic Finite Elements

We now implement our transparent boundary conditions for the approximate solutior
(2) within the framework of a cubic finite element scheme [17] and further investigate t
stability properties of the resulting method. Such a discretization in the interior dé2ain
asetofgridpoints_ = X3 < X2 < --+ < Xp_1 < Xp = X, leads from the weak formulation
(5) to the algebraic system

1) ) é )
M —-A Vks1 — b1 = (M + =A v —by.
< 4)k+1 2K+t <+4)k+4k
Here the sparse, real, and symmetric system maAtaxd mass matrik are

A|m:a(¢|v¢m) and Mlm=(¢lv¢m), |,m=l,...,2n,

in which ¢y, ¢m denote the basis functions formed by cubic finite elements. The vagtors
contain the degrees of freedom associated with the cubic finite elements such that

vj(X1)

vj (X1)
Vi=| oo |

vj (Xn)

iJj(Xn)

while the vectord; consist of the boundary terms and are consequently

—Uj(X1) + 4 0j (X))

1 v;j (X1)
.I'J.j (Xn) — 4 vj (Xn)
—j(Xn)

In this formulation, our boundary conditions (14) and (15) for batlandvx1 generate
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the following algebraic system after a slight rearrangement of the boundary contributio

1) 1) )
M—-—-(A+B =M+ -A —Ik.
( 4( + ))Vk+l ( + 2 )Vk+ 4fk

Here the matrixB is

% —B 0 0 O
1 | v 0 0 0
B=—-—| 0 0 0 0 0],
4u
0 0 0 6 Po
0 0 0 B

while the vectorry is given by

(B +8j—Dvkgp1—j (X1) — (Bj + Bj—1)kg1-j (X1)
k| =B+ Bi—Dvka1-j(X0) + (¥ + ¥j—1) Vkr1—j (X1)
1
=—7- Z 0
j () + 8j-D)vkt1-j (Xn) + (Bj + Bj-1)Vkt1-j (Xn)
(Bj + Bj—Dvkr1-j%n) + (¥j + ¥i-D)Vkr1-j (Xn)

The coefficients;, y;, ands; are defined through the recurrence relations of the precedir
section.

4.2. Numerical Stability

Last, we demonstrate that our propagation method is unconditionally stable. Our ar
ments are in principle only valid in exact arithmetic. However, since we are simply solvi
a sequence of boundary value problems in the interior domain, our method is expecte
remain stable for floating-point arithmetic as well. This expectation is consistent with t
results of the numerical examples to be displayed in the following section.

The starting point for the stability analysis is obtained by multiplying the exterior proble
(4) with each of the exterior solutiong anduvy,1 and subsequently integrating by parts.
We then have

8 8
(0, ves)z = 7 (A0, V) + B0, Vs | = (W, 02 + 7 [aw, v + b(w, v

with w € {vk, w1} and

! (8511), va)i,

1
a(w, v)x = —;(8)(11), Oxv)+ — TMZ

1
b(w, v)+ = iruz[w(Xi)(U (Xe) = 4 v(Xe)) — w(X)V(X2)],

where the notatior., -). represents th&? scalar product in the right and left exterior
domain. In the derivation of the above equations we explicitly use the equivalence betw
our transparent boundary conditions (14) and (15) and the boundary condition (2) at infin
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If we add the equations above to the weak formulation (5) of the interior problem we arr
at the identities

) )
(w, k4R — Za(w’ Vk+DR = (W, vR + Za(w’ VR,
in which

(w, V)R = (w,v)- + (w, v) + (W, V)1 and

a(w, v)r = a(w,v)_ +a(w, v) + a(w, v)4,

since the boundary termsyat cancel. By combining the equation far, ; with the complex
conjugate equation far, and comparing the real parts of the right and left hand sides w
obtain

(Vk+1, Vk+DR = (Vk, VR>

so that theL2-norm calculated over the whobe-axis is conserved. As our arguments
are equally valid if a finite element approximation is used to solve the problem in t
interior domain, we have established that our method is unconditionally stable for both
continuous and the discrete case.

5. NUMERICAL EXAMPLES

Finally we demonstrate the performance of our proposed technique with the aid of 1
standard optical examples. In an optics context, the functian the operator® of (1)
corresponds to

f(x) = k2 n?(x).

Here kg is the vacuum wave number of light, whitéx) is the refractive index. We assume
that the refractive index in the exterior domain is identically equag o that the parameter

n=ksna.
Our initial conditions are of the form

vo(X) = a;n/z exp(—(x/a)?) exp(—i /i X sing),

with ¢ = /6.

5.1. Homogeneous Medium

We first evolve a Gaussian beam of width= 10 um for a vacuum light wavelength of
1.55,m in a constant refractive index medium wittx) = ng = 1. The interior domain is
Q = (75, 75 um, the propagation step sizeAz = 0.4 um, and the propagation length
is 400um. Our computation for 1281 equally spaced grid point® lieads to Fig. 1, which
displays the absolute valye| of the functionv. The contour lines in Fig. 1 correspond to
amplitudes separated by an order of magnitude fromt 10 10°8. The residual reflection
present in the figure, as shown extensively in [14], is associated with the fact that
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X [um]

50 100 150 200 250 300 350 400
z [um]

FIG. 1. Contour plot of the magnitude of the functierfor a Gaussian beam propagating in a homogeneou:s
medium for 1281 grid points.

transparent boundary conditions assume a continuous interior problem. Accordingly,
reflections must tend to zero as the number of grid points in the interior domain is increas
Instead, repeating our computation for 2561 grid points yields the results of Fig. 2, indicat
that the boundary reflection is greatly reduced.

To study the sensitivity of the interior solution with respect to the width of the con
putational domain, we repeated the simulation of Fig. 1 with computational domains
different widths and compared the results. Thus in Fig. 3 the solution of Fig. 1, whi
was obtained on the domaind = (—75, 75) um, is compared both with a simulation on
Q = (—150 150 pm and with a simulation of2 = (—300, 300) «m, where both the spac-
ing between transverse grid points and the propagation step length are fixed. (The soluf
on the larger domains are projected after the simulation onto the smaller domain.) In
figure viage refers to either of th& = (—150, 150 um or Q = (—300 300) um calcula-
tions while vsmay is computed with2 = (=75, 75) um and|| - || is the discretd_2-norm
(v Mv)¥2_ As expected, the error is nearly independent of the computational domain wid
The largest absolute error, which occurs at the point where the maximum of the Gaus:
coincides with the boundary, is on the order of the transverse discretization error. Inde
this discretization error, which governs the rate of convergence, can be obtained frol
graph of thel_2-norm of the discrete interior solution as a function of propagation distanc

75

50

25

X {um]

0 50 100 150 200 250 300 350 400
z [um]

FIG.2. Asin Fig. 1, but for 2561 grid points.
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x 10
1.5 T T T T T T T
—— Q=(-150,150) pm
— — Q=(~300, 300) pm
1 e -
T3 E
g B
> .
|§’ 5
kS =
2 ~
- N
\
: : : : : : : N
0'5 = ........... Y . ............ e ............ ............ .......... \ =
: : : : : : \
0 ! ! ! 1 i ! i
0 50 100 150 200 250 300 350 400

z [um]

FIG. 3. The deviation of the field computed on the domai® = (—75, 75) um, of Fig. 1, from solutions
computed on larger domains using the same spacings and boundary conditions. The error is nearly indepe
of the width of the computational domain, as evidenced by the nearly identical error curves.

for differing numbers of interior grid points, as in Fig. 4, which graphs the results of ce
culations performed with 641, 1281, 2561, and 5121 grid points in the interior doma
The magnitude of the reflections vanishesHa\ x*) as a consequence of the cubic finite
element discretization of the interior problem. Observe that the discretization error for 1:
points is about 10, which is nearly identical to that obtained in the previous figure.

5.2. Refraction in a Layered Medium

In Fig. 5, we display the reflection and refraction of the Gaussian beam at an interf
between two homogeneous materials with different refractive indexes. Here, the vact
light wavelength is (1 wm, the parametea in vg is 1 um, the computational domain is
{(x,2) e R?: || < 8, 0 < z < 20}, the step size iz = 0.0125, and the mesh width is
Ax = 1/128. The refractive index distribution is given by

1, IX] < 4
n(x) = .
1.5, otherwise

The contour lines in Fig. 5 correspond|td = 0.1, . . ., 0.8 while the dotted lines indicate
the positions of the material interfaces. We remark that we obtain the same result if we
the boundary points,. equal to the location of the discontinuities in the material paramete
and keep all other parameters fixed (so that in partioyjaemains equal to the refractive
index in the exterior domain).
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FIG. 4. Thel2-norm in the interior domain for 641, 1281, 2561, and 5121 transverse grid points.
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FIG.5. Contour plot of the magnitude of the solution in a horizontally stratified medium.
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6. CONCLUSIONS

We have applied Mikusiski's operational calculus to derive transparent boundary col

ditions for the wide-angle approximation (1) of the one-way Helmholtz equation. Tl
resulting numerical method, which we have implemented with cubic finite elements, is |
conditionally stable. The accuracy of the formalism has further been established throug
analysis of the reflection of a Gaussian beam from the computational window boundar
a function of the grid point spacing. Although not considered here, wide-angle propagat

m
in

ethods based on the [P]- or [2, 2]-Pad approximations to the square-root operator coul
principle be analyzed with a straightforward but algebraically more complex extensi

of our procedure.
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